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Abstract. The aim of this paper is to summarize the general status of our understanding of small-x physics.
It is based on presentations and discussions at an informal meeting on this topic held in Lund, Sweden, in
March 2001.
This document also marks the founding of an informal collaboration between experimentalists and theo-
reticians with a special interest in small-x physics.
This paper is dedicated to the memory of Bo Andersson, who died unexpectedly from a heart attack on
March 4th, 2002.

1 Introduction

In this paper we present a summary of the workshop on
small-x parton dynamics held in Lund in the beginning
of March 2001. During two days we went through a num-
ber of theoretical and phenomenological aspects of small-x
physics in short talks and long discussions. Here we will
present the main points of these discussions and try to
summarize the general status of the work in this field.

For almost thirty years, QCD has been the theory of
strong interactions. Although it has been very successful,
there are still a number of problems which have not been
solved. Most of these have to do with the transition be-
tween the perturbative and non-perturbative description
of the theory. Although perturbative techniques work sur-
prisingly well down to very small scales where the running
coupling starts to become large, in the end what is ob-
served are hadrons, the transition to which is still not on
firm theoretical grounds. At very high energies another
problem arises. Even at high scales where the running
coupling is small the phase space for additional emissions
increases rapidly and makes the perturbative expansion

ill-behaved. The solution to this problem is to resum the
leading logarithmic behavior of the cross section to all or-
ders, thus rearranging the perturbative expansion into a
more rapidly converging series.

The DGLAP [1–4] evolution is the most familiar re-
summation strategy. Given that a cross section involving
incoming hadrons is dominated by diagrams where suc-
cessive emissions are strongly ordered in virtuality, the re-
sulting large logarithms of ratios of subsequent virtualities
can be resummed. The cross section can then be rewrit-
ten in terms of a process-dependent hard matrix element
convoluted with universal parton density functions, the
scaling violations of which are described by the DGLAP
evolution. This is called collinear factorization. Because
of the strong ordering of virtualities, the virtuality of the
parton entering the hard scattering matrix element can
be neglected (treated collinear with the incoming hadron)
compared to the large scale Q2. This approach has been
very successful in describing the bulk of experimental mea-
surements at lepton–hadron and hadron–hadron colliders.

With HERA, a new kinematic regime has opened up
where the very small x parts of the proton parton dis-
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Table 1. Summary of the ability of the collinear and k⊥-factorization approaches to
reproduce the current measurements of some observables: OK means a satisfactory
description; 1/2 means a not perfect but also a not too bad description, or in part
of the phase space an acceptable description; OK? means satisfactory description if
a heavy quark excitation component is added in leading order; NO means that the
description is bad; and? means that no thorough comparison has been made

collinear k⊥-
factorization factorization

HERA observables

high Q2 D∗ production OK [8, 9] OK [9, 10]
low Q2 D∗ production OK [8, 9] OK [9, 10]

direct photoproduction of D∗ 1/2 [11] OK [10, 12–15]
resolved photoproduction of D∗ NO [11] 1/2 [12–15]

high Q2 B production NO [16] ?
low Q2 B production NO [16] ?

direct photoproduction of B OK? [17], NO [18] OK [19–21]
resolved photoproduction of B OK? [17] OK [19–21]

high Q2 di-jets OK [22, 23] ?
low Q2 di-jets NO [22–25] ?

direct photoproduction of di-jets 1/2 [22, 24, 25] ?
resolved photoproduction of di-jets NO [22, 24, 25] ?

HERA small-x observables

forward jet production NO [26] OK [14]
forward π production NO [26] 1/2 [27]
particle spectra NO [28] OK [14]
energy flow NO [28] ?

photoproduction of J/Ψ NO [29] 1/2 [30, 31]
J/Ψ production in DIS NO ?

TEVATRON observables

high-p⊥ D∗ production ? ?
low-p⊥ D∗ production ? ?

high-p⊥ B production OK? [32] OK [20, 21, 33, 34]
low-p⊥ B production OK? [32] OK [20, 21, 33, 34]

J/Ψ production NO ?
high-p⊥ jets at large rapidity differences NO ?

tributions are being probed. The hard scale, Q2, is not
very high in such events and it was expected that the
DGLAP evolution should break down. To some surprise,
the DGLAP evolution has been quite successful in describ-
ing the strong rise of the cross section with decreasing
x. For some non-inclusive observables there are, however,
clear discrepancies as summarized in Table 1.

At asymptotically large energies, it is believed that the
theoretically correct description is given by the BFKL [5–
7] evolution. Here, each emitted gluon is assumed to take
a large fraction of the energy of the propagating gluon,
(1−z) for z → 0, and large logarithms of 1/z are summed
up to all orders. Although the rise of F2 with decreas-

ing x as measured at HERA can be described with the
DGLAP evolution, a strong power-like rise was predicted
by BFKL. Just as for DGLAP, it is possible to factorize an
observable into a convolution of process-dependent hard
matrix elements with universal parton distributions. But
as the virtuality and transverse momentum of the prop-
agating gluon are no longer ordered, the matrix elements
have to be taken off-shell and the convolution is also over
transverse momentum with unintegrated parton distribu-
tions. We therefore talk about k⊥-factorization [35, 36] or
the semihard approach [37, 38].

Recently, the next-to-leading logarithmic (NLL) cor-
rections to the BFKL equation were calculated and found
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to be huge [39, 40]. This is related to the fact that at any
finite energy, the cross section will also get contributions
from emissions of gluons which take only a small fraction
of the energy of the propagating gluon.

The CCFM [41–44] evolution equation resums also
large logarithms of 1/(1 − z) in addition to the 1/z ones.
Furthermore it introduces angular ordering of emissions
to correctly treat gluon coherence effects. In the limit of
asymptotic energies, it is almost equivalent to BFKL [45–
47], but also similar to the DGLAP evolution for large x
and highQ2. The cross section is still k⊥-factorized into an
off-shell matrix element convoluted with an unintegrated
parton density, which now also contains a dependence on
the maximum angle allowed in emissions.

An advantage of the CCFM evolution, compared to the
BFKL evolution, is that it is fairly well suited for imple-
mentation into an event generator program, which makes
quantitative comparison with data feasible also for non-
inclusive observables. There exist today three such gener-
ators [14, 48–55] and they are all being maintained or/and
developed by people from the departments of physics and
of theoretical physics at Lund University.

Since 1998 there has been an on-going project in Lund,
supported by the Swedish Royal Academy of Science, try-
ing to get a better understanding of the differences be-
tween the different generators and to compare them to
measured data. This project is what led up to the meeting
in Lund in early March 2001, where a number of experts
in the field were invited to give short presentations and
to discuss the current issues in small-x physics in general
and k⊥-factorization in particular.

In this article we will try to summarize these discus-
sions and give a general status report of this field of re-
search. We also suggest the formation of an informal col-
laboration of researchers in the field, to facilitate a coher-
ent effort to solve some of the current problems in small-x
parton dynamics.

The outline of this article is as follows. First we give a
general introduction to k⊥-factorization in Sect. 2. Then,
in Sect. 3, we discuss the off-shell matrix elements, both
at leading order and the prospects of going to next-to-
leading order. In Sect. 4, we discuss the unintegrated par-
ton distributions and how they are evolved. Here we also
try to quantify the transition between DGLAP and BFKL.
We present a number of parameterizations of unintegrated
parton distributions and make a few comparisons. Then
we describe the next-to-leading logarithmic correction to
the evolution. In Sect. 5 we describe the available event
generators for small-x evolution. Finally in Sect. 6 we
present our conclusions and discuss the forming of an in-
formal collaboration to better organize the future investi-
gations of small-x phenomenology.

2 The k⊥-factorization approach

The calculation of inclusive quantities, like the structure
function F2(x,Q2) at HERA, performed in NLO QCD is in
perfect agreement with the measurements. The NLO ap-
proach, although phenomenologically successful for F2(x,

Q = (−xP+, Q−,�0)

P = (P+, 0,�0)

(k+, k−, �k⊥)

Fig. 1. Schematic picture of a typical unitarity diagram for
deep inelastic scattering. An incoming proton with a large pos-
itive light-cone momentum, P+, is being probed by a photon
with a large virtuality and a large negative light-cone momen-
tum. The photon scatters on a parton from the proton with
space-like momentum k

y,Q2
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Fig. 2. Kinematic variables for multi-gluon emission. The t-
channel gluon momenta are given by ki and the gluons emitted
in the initial state cascade have momenta pi. The upper angle
for any emission is obtained from the quark box, as indicated
with Ξ. We define z±i = k±i/k±(i∓1) and qi = p⊥i/(1− z+i)

Q2), is not fully satisfactory from a theoretical viewpoint
because, in the words of Catani, “the truncation of the
splitting functions at a fixed perturbative order is equiva-
lent to assuming that the dominant dynamical mechanism
leading to scaling violations is the evolution of parton cas-
cades with strongly ordered transverse momenta” [56].

As soon as exclusive quantities like jet or heavy quark
production are investigated, the agreement between NLO
coefficient functions convoluted with NLO DGLAP par-
ton distributions and the data is not at all satisfactory.
Large so-called K-factors (normalization factors, for ex-
ample K = σtot

σNLO
) are needed to bring the NLO calcu-

lations close to the data [17, 18, 57, 58] (K ∼ 50 for J/ψ
production and K ∼ 2 − 4 for bottom production at the
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TEVATRON), indicating that a significant part of the
cross section is still missing in the calculations.

At small x the structure function F2(x,Q2) is propor-
tional to the sea quark density, which is driven by the
gluon density. The standard QCD fits determine the pa-
rameters of the initial parton distributions at a start-
ing scale Q0. With the help of the DGLAP evolution
equations these parton distributions are then evolved to
any other scale Q2, with the splitting functions still trun-
cated at fixed O(αs) (LO) or O(α2

s) (NLO). Any physics
process in the fixed order scheme is then calculated via
collinear factorization into the coefficient functions Ca(xz )
and collinear (independent of k⊥) parton density func-
tions: fa(z,Q2):

σ = σ0

∫
dz

z
Ca(

x

z
)fa(z,Q2) . (1)

At large energies (small x) the evolution of parton dis-
tributions proceeds over a large region in rapidity ∆y ∼
log(1/x) and effects of finite transverse momenta of the
partons may become increasingly important. Cross sec-
tions can then be k⊥ - factorized [35–38] into an off-shell
(k⊥ dependent) partonic cross section σ̂(xz , k

2
⊥) and a k⊥

- unintegrated parton density function F(z, k2
⊥):

σ =
∫

dz

z
d2k⊥σ̂(

x

z
, k2

⊥)F(z, k2
⊥) . (2)

The unintegrated gluon density F(z, k2
⊥) is described by

the BFKL [5–7] evolution equation in the region of asymp-
totically large energies (small x). An appropriate descrip-
tion valid for both small and large x is given by the CCFM
evolution equation [41–44], resulting in an unintegrated
gluon density A(x, k2

⊥, q̄
2), which is a function also of the

additional scale q̄ described below. Here and in the follow-
ing we use the following classification scheme: xG(x, k2

⊥)
describes DGLAP type unintegrated gluon distributions,
xF(x, k2

⊥) is used for pure BFKL and xA(x, k2
⊥, q̄

2) stands
for a CCFM type or any other type having two scales in-
volved.

By explicitly carrying out the k⊥ integration in (2) one
can obtain a form fully consistent with collinear factoriza-
tion [56, 59]: the coefficient functions and also the DGLAP
splitting functions leading to fa(z,Q2) are no longer evalu-
ated in fixed order perturbation theory but supplemented
with the all-loop resummation of the αs log 1/x contribu-
tion at small x. This all-loop resummation shows up in the
Regge form factor ∆Regge for BFKL or in the non-Sudakov
form factor ∆ns for CCFM, which will be discussed in
more detail in Sect. 4.

3 Off-shell matrix elements

It is interesting to compare the basic features of the k⊥-
factorization approach to the conventional collinear ap-
proach. In k⊥-factorization the partons entering the hard
scattering matrix element are free to be off-mass shell,

NLOLO resolved photon

k⊥ = 0

k⊥ = 0 k⊥ = 0

k⊥ �= 0

k⊥ − factorisation

Fig. 3. Diagrammatic representation of LO, NLO and resolved
photon processes in the collinear approach (top row) and com-
pared to the k⊥-factorization approach

in contrast to the collinear approach which treats all in-
coming partons massless. The full advantage of the k⊥-
factorization approach becomes visible, when additional
hard gluon radiation to a 2 → 2 process like γg → QQ̄ is
considered. If the transverse momentum p⊥g of the addi-
tional gluon is of the order of that of the quarks, then in a
conventional collinear approach the full O(α2

s) matrix el-
ement for 2 → 3 has to be calculated. In k⊥-factorization
such processes are naturally included to leading logarith-
mic accuracy, even if only the LO αs off-shell matrix ele-
ment is used, since the k⊥ of the incoming gluon is only
restricted by kinematics, and therefore can aquire a vir-
tuality similar to the ones in a complete fixed order cal-
culation. In Fig. 3 we show schematically the basic ideas
comparing the diagrammatic structure of the different fac-
torization approaches. Not only does k⊥-factorization in-
clude (at least some of the) NLO diagrams [60] it also
includes diagrams of the resolved photon type, with the
natural transition from real to virtual photons.

However, it has to be carefully investigated, which
parts of a full fixed NLO calculation are already included
in the k⊥-factorization approach for a given off-shell ma-
trix element and which are still missing or only approxima-
tively included. It should be clear from the above, that the
O(αs) matrix element in k⊥-factorization includes fully
the order O(αs) matrix element of the collinear factor-
ization approach, but includes also higher order contribu-
tions. In addition, due to the unintegrated gluon density,
also parts of the virtual corrections are properly resummed
(Fig. 4b,c).

3.1 Order αs off-shell matrix elements

Several calculations exist for the process γg → QQ̄ and
gg → QQ̄, where the gluon and the photon are both al-
lowed to be off-shell [35, 36] and Q(Q̄) can be a heavy or
light quark (anti quark).
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P2
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g(k1)

g(k2)

Q(p3)
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F(x, k2
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A(x, k2
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2)

Fig. 4a–c. Schematic diagrams for
k⊥-factorization: a shows the gen-
eral case for hadroproduction of
(heavy) quarks. b shows the one-
loop correction to the Born diagram
for photoproduction c shows the
all-loop improved correction with
the factorized structure function
F(x, k2

⊥) or A(x, k2
⊥, q̄

2)

The four-vectors of the exchanged partons k1, k2 (in
Sudakov representation) are (Fig.4a):

kµ1 = z1P
µ
1 + z̄1P

µ
2 + kµ⊥1 (3)

kµ2 = z̄2P
µ
1 + z2P

µ
2 + kµ⊥2 (4)

with zi, z̄i being the two components (+,−) of the light-
cone energy fraction. The (heavy) quark momenta are de-
noted by p3, p4 and the incoming particles (partons) by
P1, P2 with

P1,2 =
1
2
√
s(�0,±1, 1), 2P1P2 = s (5)

where �0 indicates the vanishing two-dimensional trans-
verse momentum vector. In the case of photoproduction
or leptoproduction this reduces to:

kµ1 = Pµ
1 , kµ2 = kµ

photo-production (6)

kµ1 = qµ = yPµ
1 + ȳPµ

2 + qµ⊥2, q2 = −Q2 .

leptoproduction (7)

In all cases the off-shell matrix elements are calculated in
the high energy approximation, with z̄1 = z̄2 = 0:

kµ1 = z1P
µ
1 + kµ⊥1 (8)

kµ2 = z2P
µ
2 + kµ⊥2, (9)

which ensures that the virtualities are given by the trans-
verse momenta, k2

1 = −k2
⊥1 and k2

2 = −k2
⊥2. The off-shell

matrix elements involve 4-vector products not only with
k1, k2 and the outgoing (heavy) quark momenta p3, p4, but
also with the momenta of the incoming particles (partons)
P1, P2. This is a result of defining the (off-shell) gluon po-
larization tensors in terms of the gluon (ki) and the in-
coming particle vectors (P1,2), which is necessary due to
the off-shellness. In the collinear limit, this reduces to the
standard polarization tensors. In [35, 36] it has been shown
analytically, that the off-shell matrix elements reduce to
the standard ones in case of vanishing transverse momenta
of the incoming (exchanged) partons k1, k2.

Due to the complicated structure of the off-shell matrix
elements, it is also necessary to check the positivity of the
squared matrix elements in case of incoming partons which

are highly off shell (k2
1, k

2
2 � 0). It has been proven ana-

lytically in [61] for the case of heavy quarks with both in-
coming partons being off mass shell. We have also checked
numerically, that the squared matrix elements are positive
everywhere in the phase space, if the incoming particles
(electron or proton) are exactly massless (P 2

1 = P 2
2 = 0).

As soon as finite masses (of the electron or proton) are
included, the exact cancellation of different terms in the
matrix elements is destroyed, and unphysical (negative)
results could appear.

From the off-shell matrix elements for a 2 → 2 pro-
cess, it is easy to obtain the high energy limit of any
on-shell 2(massless partons) → 2 + n(massless partons)
process, with n = 1, 2 (see Fig. 4b for the case of pho-
toproduction), by applying a correction as given in [35,
page 180]. By doing so, the corrections coming from addi-
tional real gluon emission are estimated (i.e. γg → QQ̄g
corrections to γg → QQ̄) with the incoming gluons now
treated on-shell. In the case of hadroproduction one ob-
tains the NNLO corrections gg → QQ̄gg. In this sense
k⊥-factorization provides an easy tool for estimating K-
factors in the high energy limit:

K =
σtot

σ(LO or NLO)
� σ(2 → 2) + σ(2 → 2 + n)

σ(2 → 2)
(10)

In Table 2 we give an overview over the different off-
shell matrix elements available. It has been checked, that
the different calculations [35, 62] of the process γ(∗)g∗ →
QQ̄ give numerically the same result. Also the matrix el-
ements of [34–36] are identical.

3.2 Next-to-Leading corrections
to αs off-shell matrix elements

So far we have been dealing with matrix elements only in
O(αs), but even here k⊥-factorization has proven to be
a powerful tool in the sense that it includes already in
lowest order a large part of the NLO corrections [60] of
the collinear approach. However, LO calculations are still
subject to uncertainties in the scale of the coupling and
in the normalization. As the next-to-leading corrections
(including energy-momentum conservation) to the BFKL
equation are now available also the matrix elements need
to be calculated in the next-to-leading order.
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+ ... + ...
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(e)
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M

Fig. 5a–e. Schematic diagrams for
next-to-leading contributions: a vir-
tual corrections, b real corrections,
c the process γ∗+q → (qq̄)+q, d the
process γ∗ + q → (qq̄g) + q, e dia-
grams showing the reggeization of
the gluon

Table 2. Table of calculations of O(αs) off-shell matrix ele-
ments for different types of processes

process comments reference

γg∗ → QQ̄ |M |2 [19, 35, 62]
γ∗g∗ → QQ̄ |M |2 [35, 62]
γ∗g∗ → QQ̄ partially integrated [63, 64]
g∗g∗ → QQ̄ |M |2 [34–36]

γg∗ → J/ψg |M |2 [30, 65]
γg∗ → J/ψg helicity amplitude [66]
γ∗g∗ → J/ψg helicity amplitude [66]
g∗g∗ → J/ψg helicity amplitude [67]

NLO corrections to the process γ∗g∗ → X contain the
virtual corrections to γ∗g∗ → qq̄ (Fig. 5a) and the leading
order off-shell matrix element for the process γ∗g∗ → qq̄g
(Fig. 5b). The calculation of the former ones has been com-
pleted, and the results for the matrix elements are pub-
lished in [68]. The real corrections (γ∗g∗ → qq̄g) have
been obtained for helicity-summed squares of the matrix
elements. For the longitudinally polarized photon they are
published in [69], and results for the transversely polarized
photon will be made available soon [70].

The starting point of these calculations is a study of
the Regge limit of the processes γ∗+q → (qq̄)+q (Fig. 5c)
and γ∗ + q → (qq̄g) + q (Fig. 5d), i.e. the contributing
QCD diagrams have been calculated in the region s =
(q + p)2  Q2, M2, t and Q2  ΛQCD, with q(p) being
the four-vector of the photon (quark). In this limit, the ex-
changed gluon is not an elementary but a reggeized gluon:
the two gluon exchange diagrams (Fig. 5e) contain a term
proportional to ω(t) log(s), where ω(t) is the gluon Regge
trajectory function. This term is not part of the subpro-
cess γ∗g∗ → qq̄ but rather belongs to the exchanged gluon.
In order to find the contribution of Fig. 5e to this scatter-
ing subprocess, one first has to subtract the reggeization
piece. This means that, for the subprocess γ∗g∗ → qq̄, the
notation ‘g∗’ in NLO not only stands for ‘off-shellness’ but
also for ‘reggeized’. It also has important consequences for
the factorization of the NLO off-shell subprocess inside a

larger QCD diagram: the t-channel gluons connecting the
different subprocesses (see, for example, g(k1) in Fig. 4)
are not elementary but reggeized, and the QCD diagrams
include subsets of graphs with more than two gluons in
the t-channel (see Fig. 5e)

The results for the virtual corrections contain infrared
singularities, both soft and virtual ones. As usual, when
integrating the real corrections over the final state gluon,
one finds the same infrared singularities but with oppo-
site signs. So in the sum of virtual and real corrections
one obtains an infrared finite answer. A peculiarity of
this NLO calculation is the interplay with the LO process
γ∗+q → (qq̄)+g+q. In the latter, the process is calculated
in the leading log(s) approximation (LO BFKL approxi-
mation), where the gluon has a large rapidity separation
w.r.t. the qq̄-pair (i.e. it is emitted in the central region
between the qq̄-pair and the lower quark line in Fig. 5d).
As a result of this high energy (small x- or Regge) factor-
ization, expressions for the vertex g∗ + g∗ → g and for the
subprocess γ∗g∗ → qq̄ are obtained. When turning to the
NLO corrections of the process γ∗ + q → (qq̄g) + q, the
calculation extends to next-to-leading log(s) accuracy, but
it contains, as a special case, also the LO BFKL process.
In order to avoid double counting, one has to subtract
the central region contribution. Only after this subtrac-
tion we have a clean separation: qq̄g final states without
or with a large rapidity separation between the gluon and
the quark-antiquark pair. The former one belongs to the
NLO approximation, whereas the latter one is counted in
the leading log(s) approximation.

The results for real corrections in [69] are very inter-
esting also in the context of the QCD color dipole picture.
It is well-known that the total LO γ∗q cross section at
high energies can be written in the form [71, 72]:

σγ
∗q
tot =

∫
dz

∫
dρ
(
ψγ

∗
qq̄ (Q, z, ρ)

)∗
σqq̄(x, z, ρ)ψ

γ∗
qq̄ (Q, z, ρ)

(11)
where z and (1−z) denote the momentum fractions (w.r.t.
the photon momentum q) of the quark and the antiquark,
respectively, ρ is the transverse extension of the quark-
antiquark pair, ψqq̄ stands for the qq̄ Fock component
of the photon wave function, and σqq̄ is the color dipole
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cross section. This form of the scattering cross section is in
agreement with the space time picture in the target quark
rest frame: a long time before the photon reaches the tar-
get quark at rest, it splits into the quark-antiquark pair
which then interacts with the target. During the interac-
tion the transverse extension of the quark-antiquark pair
remains frozen, i.e the initial quark-antiquark pair has the
same ρ-value as the final one. Via the optical theorem the
γ∗q total cross section is related to the square of the scat-
tering matrix element of the process γ∗+q → (qq̄)+q; the
dipole cross section form (11) must then be a consequence
of the special form of the LO amplitude for the subprocess
γ∗g∗ → qq̄. Since this form of the total γ∗q cross section
(which is preserved when the target quark is replaced by
the target proton) looks so appealing (and also has turned
out to be extremely useful in phenomenological applica-
tions), that it is desirable to investigate its validity also
beyond leading order.

When trying to generalize (11) to NLO, one is led to
study the square of the real corrections γ∗+q → (qq̄g)+q.
If the color dipole picture remains correct (factorization
in wave function and dipole cross section), this contribu-
tion naturally should lead to a new qq̄g Fock component of
the photon wave function, and to a new interaction cross
section σqq̄g, which describes the interaction of the quark-
antiquark-gluon system with the target quark. In [69, 70]
it is shown that this is indeed the case. The form of the
new photon wave function is rather lengthy (in particular
for the transverse photon), and a more detailed investi-
gation is still needed. Nevertheless, one feels tempted to
conclude that the color dipole form (11) is the beginning
of a general color multipole expansion, where the different
Fock components of the photon wave function describe
the spatial distribution of color charge inside the photon.
However, before this conclusion can really be drawn, it re-
mains to be shown that also the virtual corrections to the
scattering amplitude of γ∗ + q → (qq̄)+ q fit into the form
(11). These corrections should lead to NLO corrections
of the photon wave function or the dipole cross section.
They also may slightly ‘melt’ the transverse extension of
the quark-antiquark pair during the interaction with the
target.

In summary, the results in [68–70] provide the start-
ing point for discussing exclusive final states in the k⊥-
factorization scheme in NLO accuracy. However, before
these formulae can be used in a numerical analysis, vir-
tual and real corrections have to be put together, and IR
finite cross sections have to be formulated. The NLO cor-
rections to the off-shell matrix elements described in this
subsection also represent the main ingredients to the NLO
photon impact factor. Its importance will be discussed in
Sect. 4.6.1

3.3 Gauge-invariance

The off-shell matrix elements and the cross section taken
in lowest order αs are gauge invariant, as argued in [35].
However, when extended to next order in perturbation
theory, as depicted in Fig. 3, problems will occur and the

off-shell matrix elements and unintegrated parton distri-
butions are no longer necessarily gauge invariant. The fol-
lowing critique indicates that their definition needs further
specification and that further work is needed to properly
justify the formalism [73].

Basically, parton distributions are defined as a hadron
expectation value of a quark and antiquark field (or two
gluon fields):

〈p|ψ̄(y)Γψ(0)|p〉, (12)

with an appropriate Fourier transformation on the space-
time argument yµ, some appropriate Dirac matrix Γ and
some appropriate normalization. This definition is not
gauge invariant, so one must either specify the gauge or
one modifies the definition to make it gauge invariant:

〈p|ψ̄(y)ΓPe−ig ∫ y
0 dy′µAα

µ(y′)tαψ(0)|p〉. (13)

Here, tα are generating matrices for the SU(3) color group
of QCD, and the symbol P denotes that the gluon fields
are laid out in their order on the path in the integral from
0 to y.

The big question is which path is to be used. For the
integrated parton distributions, y is at a light-like sepa-
ration from 0: normally y− �= 0, y+ = y⊥ = 0, and then
taking the path along the light-like straight line joining
0 and y = (0, y−, 0⊥) is natural and correct. But for un-
integrated distributions, this is not so simple; one has a
choice of paths. The choice is not arbitrary but is deter-
mined by the derivation: i.e., the definition is whatever is
appropriate to make a correct factorization theorem.

This can be seen from the analysis of gluon emission
that we have already described. This analysis is only ap-
plicable if ladder diagrams, as in Fig. 3, actually dominate.
In fact, in a general gauge, non-ladder diagrams are as im-
portant as ladder diagrams. This is the case, for example,
in the Feynman gauge. The standard leading-logarithm
analysis suggests, as is commonly asserted, that the ap-
propriate gauge is a light-cone gauge n · A = 0, where n
is a light-like vector in a suitable direction, for then non-
ladder contributions are suppressed in the LLA analysis.
From this one would conclude that the off-shell matrix el-
ements and the unintegrated parton distributions are de-
fined as the appropriate field theory Green functions in
light-cone gauge.

Closer examination shows that there must be prob-
lems since the unintegrated parton distributions are di-
vergent. This was shown quite generally by Collins and
Soper [74, 75] as part of their derivation of factorization
for transverse-momentum distributions. They found they
needed to derive factorization and to define unintegrated
parton distributions in a non-light-like axial gauge, i.e.,
with n2 �= 0 1. They derived an evolution equation for
the dependence on the gauge-fixing vector; the evolution
is quite important and contains doubly-logarithmic Su-
dakov effects. In the limit n2 → 0, the parton distribu-
tions become so singular that they are not defined. The
divergences are associated with the emission of gluons of

1 An equivalent and probably better definition can be made
with suitable path-ordered exponential in the operator
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arbitrarily negative rapidity with respect to the parent
hadron; commonly these are called soft gluons, and a non-
light-like gauge-fixing vector provides a cutoff on the di-
vergences. It is normally said that soft gluons cancel in
QCD cross sections. However, the standard cancellation
requires an integral over all parton transverse momentum,
which is of course not applicable in an unintegrated parton
density.

The divergences can readily be seen in one-loop graphs,
and are a generalization of divergences known to occur in
light-cone gauge. Modification of the iε prescription of the
1/k ·n singularity of the gluon propagator, as is commonly
advocated, is not sufficient, since this does not remove the
divergence in the emission of real gluons, for which the
singularity is an endpoint singularity in k · n.

Clearly, in all the derivations of the BFKL and re-
lated equations, there must be an appropriate cutoff. Un-
fortunately, this is not normally made very explicit, even
though an explicit specification of the cutoff is vitally im-
portant if the formalism is to make sense beyond LO. One
can expect, that such a cutoff is a cutoff in angle or ra-
pidity, and it should be related to angular ordering, sup-
porting the intuitive approximate picture. However, the
presence of the cutoff implies that there is an extra param-
eter in the parton distributions, whose variation should be
understood. Balitsky [76] has worked in this direction, al-
though his formulation does not appear to have developed
far enough to address the issues in the present document.

A proper derivation will also result in an explicit defi-
nition of a reggeized gluon. Such a definition is not readily
extracted from the original BFKL publications. At most
these publications provide a definition as a property of a
solution of their equation. No explicit definition is given
whereby quantities involving reggeized gluons are matrix
elements of some operator or other.

4 Unintegrated parton distributions

4.1 Introduction

The conventional parton distributions describe the den-
sity of partons carrying a certain longitudinal momentum
fraction inside the proton. These distributions are inte-
grated over the transverse momenta of the partons up to
the factorization scale µ. However, in order to describe
some exclusive processes it becomes necessary to consider
the transverse momenta of the partons and thus use so
called unintegrated gluon distributions A(x, k2

⊥, µ
2). Un-

integrated parton distributions account for the resumma-
tion of a variety of logarithmically enhanced terms, such
as (

αs log(µ2/Λ2)
)n

,(
αs log(µ2/Λ2) log(1/x)

)n
,

(αs log(1/x))
n and

(
αs log2(µ2/k2

⊥)
)n

(14)

The unintegrated parton distributions describe the prob-
ability of finding a parton carrying a longitudinal mo-
mentum fraction x and a transverse momentum k⊥ at

the factorization scale µ. The unintegrated gluon den-
sity xA(x, k2

⊥, µ
2) can be related to the integrated one

xg(x, µ2) by:

xg(x, µ2) �
∫ µ2

0
dk2

⊥xA(x, k2
⊥, µ

2) . (15)

The � sign in the above equation indicates, that there
is no strict equality between unintegrated and integrated
parton distributions, as neither are observables.

In unintegrated parton distributions, the contribution
from the large logarithms in x and µ2, the terms speci-
fied above in expression (14), can be correctly disentan-
gled. However, the unintegrated parton distributions are
defined only as a functions of three variables x, k2

⊥, µ
2.

The 4-vector k of the propagator gluon in initial state
cascade is given by:

k = (k+, k−, k⊥)

with k+ = x+P+, k− = x−P−. The virtuality k2 is:

k2 = k+k− − k2
⊥ = x+x−P−P+ − k2

⊥.

In the region of strongly ordered k+, the typical values of
k− are small enough that it can be neglected in the hard
scattering factor. For example, the virtuality is dominated
by the transverse momentum only:

k2 � −k2
⊥.

However, the k− integral is still present, and in fact, part
of the definition of an unintegrated parton density is, that
the relevant matrix element of a gluonic operator is inte-
grated over all k−. This is the reason, why only x = x+ is
kept in the unintegrated gluon density.

The all-loop resummation of the αs log 1/x contribu-
tion at small x leads to Reggeization of the gluon vertex,
giving rise to a significant form factor. The Regge form fac-
tor ∆Regge, often also called non-Sudakov form factor ∆ns,
regularizes the 1/z divergence in the splitting function,

Pg(z+) ∝ ∆Regge(k⊥, z+)
z+

. (17)

The ∆Regge of BFKL is given by [77]:

∆Regge(z+, k2
⊥) (18)

= exp

(
−ᾱS

∫ 1

z+

dz′

z′

∫
dq

′2
⊥

q
′2
⊥

Θ(k2
⊥ − q

′2
⊥ )Θ(q

′2
⊥ − q2

0)

)

with ᾱS = CAαs

π = 3αs

π and q0 being a lower cutoff. This
form factor can be expanded by a power series and then
symbolically represented as in Eq. (18) (on top of the next
page) where the small x resummation of the virtual correc-
tions becomes obvious. Such a diagrammatic representa-
tion is of course gauge dependent. It should be noted that
the Regge form factor in this way looks like the Sudakov
form factor [78, 79] used to regularize the 1/(1−z) pole in
standard DGLAP evolution, but the resummed diagrams
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+ + + . . .+

ᾱS(k⊥)
1
z+

[
1 + ᾱS log (z) log

(
k2

⊥
q2
0

)
+
(
1
2!
ᾱS log (z) log

(
k2

⊥
q2
0

))2

. . .

]
(18)

involve small z rather than large ones. This similarity is
used in the derivation of the Linked Dipole Chain model
below.

In interpreting the results quoted in this section, the
reader should bear in mind the caveats explained in Sec.
3.3, that as yet, no fully explicit definition of the parton
distributions has been given.

4.2 The CCFM evolution

According to the CCFM [41–44] evolution equation the
emission of gluons during the initial cascade is only al-
lowed in an angular-ordered region of phase space. The
maximum allowed angle Ξ is defined by the hard scatter-
ing quark box, producing the (heavy) quark pair. In terms
of Sudakov variables the quark pair momentum is written
as:

pq + pq̄ = Υ (P1 +ΞP2) + �Q⊥ (19)

where Υ (ΥΞ) is the positive (negative) light-cone momen-
tum fraction of the quark pair, P1,2 are the four-vectors of
incoming beam particles, respectively and �Qt is the vec-
torial sum of the transverse momenta of the quark pair
in the laboratory frame. Similarly, the momenta pi of the
gluons emitted during the initial state cascade are given
by (here treated massless):

pi = υi(P1 + ξiP2) + p⊥i , ξi =
p2

⊥i
sυ2

i

, (20)

with υi = (1 − zi)xi−1, xi = zixi−1 and s = (P1 + P2)2
being the squared center of mass energy. The variable ξi is
connected to the angle of the emitted gluon with respect
to the incoming proton and xi and υi are the momentum
fractions of the exchanged and emitted gluons, while zi
is the ratio of the energy fractions in the branching (i −
1) → i and p⊥i is the transverse momentum of the emitted
gluon i.

The angular-ordered region is then specified by (Fig. 2):

ξ0 < ξ1 < · · · < ξn < Ξ (21)

which becomes:
zi−1q̄i−1 < q̄i (22)

where the rescaled transverse momenta q̄i of the emitted
gluons is defined by:

q̄i = xi−1
√
sξi =

p⊥i
1 − zi

. (23)

It is interesting to note, that the angular ordering con-
straint, as given by (22), reduces to ordering in transverse
momenta p⊥ for large z, whereas for z → 0, the transverse
momenta are free to perform a so-called random walk.

The CCFM evolution equation with respect to the
scale q̄2 can be written in a differential form [44]:

q̄2 d

dq̄2

xA (x, k2
⊥, q̄

2
)

∆s(q̄2, Q2
0)

(24)

=
∫

dz
dφ

2π
P̃
(
z, (q̄/z)2, k2

⊥
)

∆s(q̄2, Q2
0)

x′A
(
x′, k

′2
⊥ , (q̄/z)2

)

where A(x, k2
⊥, q̄

2) is the unintegrated gluon density, de-
pending on x, k2

⊥ and the evolution variable µ2 = q̄2. The
splitting variable is z = x/x′ and �k⊥

′
= (1 − z)/z�q + �k⊥,

where the vector �q is at an azimuthal angle φ. The Su-
dakov form factor ∆s is given by:

∆s(q̄2, Q2
0) (25)

= exp

(
−
∫ q̄2

Q2
0

dq2

q2

∫ 1−Q0/q

0
dz

ᾱS
(
q2(1 − z)2

)
1 − z

)

with ᾱS = CAαs

π = 3αs

π . For inclusive quantities at leading-
logarithmic order the Sudakov form factor cancels against
the 1/(1−z) collinear singularity of the splitting function.

The splitting function P̃ for branching i is given by:

P̃g(zi, q2
i , k

2
⊥i) =

ᾱS(q2
i (1 − zi)2)
1 − zi

+
ᾱS(k2

⊥i)
zi

∆ns(zi, q2
i , k

2
⊥i) (26)

where the non-Sudakov form factor ∆ns is defined as:

log∆ns(zi, q2
i , k

2
⊥i)

= −ᾱS

∫ 1

zi

dz′

z′

∫
dq2

q2 Θ(k⊥i − q)Θ(q − z′qi) . (27)

The upper limit of the z′ integral is constrained by the Θ
functions in (27) by: zi ≤ z′ ≤ min(1, k⊥i/qi), which re-
sults in the following form of the non-Sudakov form factor
[80]:

log∆ns = −ᾱS(k2
⊥i) log

(
z0
zi

)
log
(

k2
⊥i

z0ziq2
i

)
(28)
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where

z0 =




1 ifk⊥i/qi > 1
k⊥i/p⊥i ifzi < k⊥i/qi ≤ 1
zi ifk⊥i/qi ≤ zi

.

The unintegrated gluon density A(x, k2
⊥, q̄

2) is a func-
tion also of the angular variable q̄, ultimately limited by an
angle, q̄2 = x2

n−1Ξs, defined by the hard interaction, and
the two scales k2

⊥, q̄
2 in A(x, k2

⊥, q̄
2) should not come as a

surprise. As we are concentrating on an evolution, which
is not ordered in transverse momenta, it is natural to have
more than one scale in the problem. The typical example
of such a two scale evolution process is γ∗γ∗ → hadrons
scattering where the photons are highly virtual, but the
virtualities still being much smaller than the total energy,
s  Q2

1 ≈ Q2
2  ΛQCD. Another example is DIS with a

forward high-p⊥ jet, where Q2 and p2
⊥ provide the scales.

In the DGLAP approximation the evolution is performed
between a small and a large scale – a large scale probe
resolves a target at a smaller scale. It is obvious, that this
evolution is not appropriate for the case of two similar
scales and instead an evolution in rapidity, or angle, is
needed.

In CCFM the scale q̄ (coming from the maximum an-
gle) can be related to the evolution scale in the collinear
parton distributions. This becomes obvious since

q̄2 ∼ x2
gΞs = yxgs = ŝ+Q2

⊥ . (29)

The last expression is derived by using pq + pq̄ � xgP2 +
yP1 + �Q⊥, Ξ � y/xg and ŝ = yxgs − Q2

⊥. This can be
compared to a possible choice of the renormalization and
factorization scale µ2 in the collinear approach with µ2 =
Q2

⊥ + 4 · m2
q and the similarity between µ and q̄ becomes

obvious.

4.3 LDC and the transition
between BFKL and DGLAP

The Linked Dipole Chain (LDC) model [50, 51] is a refor-
mulation of CCFM which makes the evolution explicitly
left–right symmetric, which will be discussed in Sect. 4.6
in more detail. LDC relies on the observation that the
non-Sudakov form factor in (27), despite its name, can be
interpreted as a kind of Sudakov form factor giving the
no-emission probability in the region of integration. To
do this an additional constraint on the initial-state radi-
ation is added requiring the transverse momentum of the
emitted gluon to be above the smaller of the transverse
momenta of the connecting propagating gluons:

p2
⊥i > min(k2

⊥i−1, k
2
⊥i). (30)

Emissions failing this cut will instead be treated as final-
state emissions and need to be resummed in order not to
change the total cross section. In the limit of small z and
imposing the kinematic constraint of (65) (see Sect. 4.6
for further details) gives a factor which if it is multiplied

with each emission, completely cancels the non-Sudakov
and thus, in a sense de-reggeizes the gluon.

One may ask when it is appropriate to use collinear fac-
torization (DGLAP) and when we must account for effects
of BFKL and k⊥-factorization. Clearly, when k⊥ is large
and 1/x is limited we are in the DGLAP regime, and when
1/x is large and k⊥ is limited we are in the BFKL regime.
An essential question is then: What is large? Where is the
boundary between the regimes, and what is the behavior
in the transition region? Due to the relative simplicity of
the LDC model, which interpolates smoothly between the
regimes of large and small k⊥, it is possible to give an
intuitive picture of the transition. In the following x is al-
ways kept small, and leading terms in log 1/x are studied.
Thus the limit for large k⊥ does not really correspond to
the DGLAP regime, but more correctly to the double-log
approximation.

First we will discuss the case of a fixed coupling. For
large values of k⊥ (in the “DGLAP region”) the uninte-
grated structure function F(x, k2

⊥) is dominated by con-
tributions from chains of gluon propagators which are or-
dered in k⊥. The result is a product of factors ᾱS · dxi

xi
· dk2

⊥i

k2
⊥i

[1–4]:

F(x, k2
⊥) ∼

∑
N

∫ N∏
ᾱS dliθ(li+1 − li) dκiΘ(κi+1 − κi)

where

ᾱS ≡ 3αs
π

, l ≡ log(1/x) and κ ≡ log(k2
⊥/Λ

2) . (31)

Integration over κi with the Θ-functions gives the phase
space for N ordered values κi. The result is κN/N !. The
integrations over li give a similar result, and thus we ob-
tain the well-known double-log result

F(x, k2
⊥) ∼

∑
N

ᾱN · l
N

N !
· κ

N

N !
= I0(2

√
ᾱlκ) . (32)

In the BFKL region also non-ordered chains contribute,
and the result is a power-like increase ∼ x−λ for small
x-values [5–7].

The CCFM [41–44] and the LDC model [50, 51, 81] in-
terpolate between the DGLAP and BFKL regimes. In the
LDC model the possibility to “go down” in k⊥, from κ′ to
a smaller value κ, is suppressed by a factor exp(κ−κ′). The
effective allowed distance for downward steps is therefore
limited to about one unit in κ. If this quantity is called δ,
the result is, that the phase space factor κN

N ! is replaced

by (κ+Nδ)N

N ! . Thus we obtain:

F(x, k2
⊥) ∼

∑
N

(ᾱl)N

N !
(κ+Nδ)N

N !
. (33)

When κ is very large, this expression approaches (32).
When κ is small we find, using Sterling’s formula, that
F(x, k2

⊥) ∼ ∑
N (ᾱSlδe)N/N ! = exp(λl) ≡ x−λ, with λ =
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ᾱSδe. For δ = 1 this gives λ = eᾱS = 2.72ᾱS, which is very
close to the leading order result for the BFKL equation,
λ = 4 log 2 ᾱS = 2.77ᾱS. Thus (33) interpolates smoothly
between the DGLAP and BFKL regimes. It is also possible
to see that the transition occurs for a fixed ratio between
κ and l, κ/l ≈ eᾱS.

For a running coupling a factor ᾱS dκ in (31) is re-
placed by α0 dκ/κ = α0 du, where α0 ≡ ᾱSκ, u ≡ log(κ/
κ0) and κ0 is a cutoff. In the large k⊥ region (the “DGLAP
region”) the result is therefore similar to (32), but with
ᾱSκ replaced by α0u. For small x-values we note that the
allowed effective size of downward steps, which is still one
unit in κ, is a sizeable interval in u for small κ, but a very
small interval in u for larger κ.

This is the reason for an earlier experience [51], which
showed that a typical chain contains two parts. In the first
part the k⊥-values are relatively small, and it is therefore
easy to go up and down in k⊥, and non-ordered k⊥-values
are important. The second part is an ordered (DGLAP-
type) chain, where k⊥ increases towards its final value.

Let us study a chain with N links, out of which the
first N − k links correspond to the first part with small
non-ordered k⊥ values, and the remaining k links belong
to the second part with increasing k⊥. Assume that the
effective phase space for each ui in the soft part is given by
a quantity ∆. Then the total weight for this part becomes
∆N−k. For the k links in the second, ordered, part the
phase space becomes as in the DGLAP case uk/k!. Thus
the total result is (G ≡ κF)

G ∼
∑
N

(α0l)N

N !

N∑
k=0

uk

k!
∆N−k

=
∑
N

(α0l∆)N

N !

N∑
k=0

(u/∆)k

k!
. (34)

This simple model also interpolates smoothly between the
DGLAP and BFKL regions. For large u-values the
last term in the sum over k dominates, which gives the
“DGLAP” result

G ∼
∑

(α0lu)N/(N !)2

= I0(2
√
α0lu)

≈ (16π2α0lu)−1/4 · exp(2
√
α0lu). (35)

For small u-values the sum over k gives approximately
exp (u/∆), and thus

G ∼ exp(α0∆l) · exp(u/∆) = x−λκα0/λ, with λ = α0∆.
(36)

The transition between the regimes occurs now for a fixed
ratio between u/l ≈ λ2/α0, which is of order 0.1 if λ
is around 0.3. The result is illustrated in Fig. 6, which
shows how the expression in (34) interpolates between the
DGLAP and BFKL limits in (35) and (36) for large and
small k⊥ 2.

2 In the framework of N = 4 SUSY, where the correspond-
ing coupling is not running, the relations between DGLAP and
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Fig. 6. Results for a running coupling for λl = 3, which for
λ = 0.3 means x = 5·10−5. (Note that this x-value corresponds
only to the chain between the “observed” low energy gluon and
the parent soft gluon.) The solid line corresponds to the model
in (34), the dashed line to the BFKL limit, (36), and the dotted
line to the DGLAP limit in (35). The abscissa is the variable
w = α0u/λ

2l defined so that the transition occurs for w ≈ 1.
The corresponding values for k2

⊥ in GeV 2 for λ = 0.3 and
λl = 3 are also indicated

The simple models in (33) and (34), for fixed and run-
ning couplings respectively, interpolate smoothly between
large and small k⊥-values. They contain the essential fea-
tures of the CCFM and LDC models, and can therefore
give an intuitive picture of the transition between these
two regimes. The transition occurs for a fixed ratio be-
tween log k2

⊥ and log 1/x for fixed coupling, and between
log(log k2

⊥) and log 1/x for a running coupling. A more ex-
tensive discussion, including effects of non-leading terms
in log 1/x and the properties of Laplace transforms, is
found in [86].

4.4 The CCFM equation
in the transverse coordinate representation

It might be useful to consider the CCFM equation us-
ing the transverse coordinate (or impact parameter) [87]
b conjugate to the transverse momentum k⊥ and to intro-
duce the b dependent gluon distribution Ā(x, b, q̄2) defined
by the Fourier-Bessel transform of A(x, k2

⊥, q̄
2):

Ā(x, b, q̄2) =
∫ ∞

0
k⊥dk⊥J0(bk⊥)A(x, k2

⊥, q̄
2). (37)

where J0(u) is the Bessel function. The advantage of this
representation becomes particularly evident in the so
called ‘single -loop’ approximation that corresponds to
the replacement q̄/z → q̄ and ∆NS → 1. In this approx-
imation the CCFM equation reduces to the conventional
DGLAP evolution and (24) is diagonalized by the Fourier
- Bessel transformation provided that we set the same ar-
gument µ2 ∼ q̄2 in both terms in this equation. The evo-
lution equation for Ā(x, b, q̄2) reads:

BFKL equations has been found in [82–85] for the first two or-
ders of perturbation theory. These results can be useful for
possible future study of the corresponding approximate rela-
tions in QCD
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q̄2 d

dq̄2

xĀ(x, b, q̄2)
∆̄s(q̄2, Q2

0)

= ᾱS(q̄2)
∫

dzP̄ (z)J0[(1 − z)q̄b]
x′Ā(x′, b, q̄2)
∆̄s(q̄2, Q2

0)
(38)

where
P̄ (z) =

1
1 − z

− 2 + z(1 − z) +
1
z
. (39)

In (38) the argument µ2 of the QCD coupling was set
µ2 = q̄2 and

∆̄s(q̄2, Q2
0) = exp

(
−
∫ q̄2

Q2
0

dq2

q2

∫ 1−Q0/q

0
dzᾱS(q2)zP̄ (z)

)

(40)
In the splitting function P̄ (z) we have included the terms
which are non-singular at z = 0 or z = 1 in order to
get a complete DGLAP evolution equation for the inte-
grated gluon distribution. For the same reason we have
also extended the definition of the Sudakov form factor
by including the complete splitting function P̄ (z) and not
only its part which is singular at z = 1 (cf. (40)).

Equation (38) can be solved exactly after going to
the moment space and introducing the moment function
Ãω(b, q̄2) defined by:

Ãω(b, q̄2) =
∫ 1

0
dxxωĀ(x, b, q̄2) . (41)

The solution of the evolution equation for the moment
function Ãω(b, q̄2) reads:

Ãω(b, q̄2) = Ã0
ω(b) · exp

[∫ q̄2

Q2
0

dq2

q2 ᾱS(q2) (42)

×
∫ 1−Q0/q̄

0
dzzP̄ (z)(zω−1J0(bq(1 − z)) − 1)

]

where Ã0
ω(b) is the Fourier-Bessel transform of the (input)

unintegrated distribution at q̄ = Q0. It should be noted
that at b = 0, Ãω(b, q̄2) is proportional to the moment
function of the integrated gluon distribution g(x, q̄). The
solution (42) at b = 0 reduces to the solution of the LO
DGLAP equation for the moment function of the inte-
grated gluon distribution. It should also be noted that the
integrand in (42) is free from singularities at z = 1 and so
we can set Q0 = 0 in the upper integration limit over dz.
The formalism presented above is similar to that used for
the description of the transverse momentum distributions
in (for instance) the Drell-Yan process (see e.g. [88–91]).
In order to obtain more insight into the structure of the
unintegrated distribution which follows from the CCFM
equation in the single loop approximation it is useful to
adopt in (37) the following approximation of the Bessel
function:

J0(u) � Θ(1 − u) (43)

which gives:

A(x, k2
⊥, q̄

2) � 2
dĀ(x, b = 1/k⊥, q̄2)

dk2
⊥

. (44)

Using the same approximation for the Bessel function in
(42) we get, after some rearrangements, the following re-
lation between unintegrated and integrated gluon distri-
butions:

A(x, k2
⊥, q̄

2) � d

dk2
⊥
[g(x, k2

⊥)∆̄s(q̄2, k2
⊥)] (45)

Similar relation has also been used in [92, 93] (see also (55)
in the next section).

In the general ‘all loop’ case, the non-Sudakov form-
factor generates contributions which are no longer diago-
nal in the b space and so the merit of using this represen-
tation is less apparent. However in the leading log(1/x)
approximation at small x the CCFM equation reduces to
the BFKL equation with no scale dependence and the ker-
nel of the BFKL equation in b space is the same as that
in the (transverse) momentum space. The work to explore
the CCFM equation in b space beyond the ‘single loop’
and BFKL approximations is in progress.

4.5 Available parameterizations
of unintegrated gluon distributions

Depending on the approximations used, different uninte-
grated gluon distributions can be obtained (see (15)). Here
we describe some of the so far published ones and make
some comparisons3. We use the following classification
scheme: xG(x, k2

⊥) describes DGLAP type unintegrated
gluon distributions, xF(x, k2

⊥) is used for pure BFKL and
xA(x, k2

⊥, q̄
2) stands for a CCFM type or any other type

having two scales involved.

Derivative of the integrated gluon density

Ignoring the fact that the unintegrated density may de-
pend on two scales we can invert (15) which gives the
unintegrated gluon density G(x, k2

⊥):

xG(x, k2
⊥) =

dxg(x, µ2)
dµ2

∣∣∣∣
µ2=k2

⊥

. (46)

Here xg(x, µ2) can be any of the parameterizations of the
gluon density available.

GBW (Golec-Biernat Wüsthoff [94])

Within the color-dipole approach of [94, 95], a simple pa-
rameterization of the unintegrated gluon density was ob-
tained which successfully describes both inclusive and also
diffractive scattering. The unintegrated gluon density is
given by [94]:

F(x, k2
⊥) =

3σ0

4π2αs
R2

0(x)k
2
⊥ exp

(−R2
0(x)k

2
⊥
)

(47)

3 Parameterizations of the unintegrated gluon distributions
described here are available as a FORTRAN code from
http://www.thep.lu.se/Smallx
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with σ0 = 29.12 mb, αs = 0.2 and

R0(x) =
1
Q0

(
x

x0

)λ/2

and Q0 = 1 GeV, λ = 0.277 and x0 = 0.41 · 10−4, where
the parameters correspond to the parameterization which
includes charm [95].

RS (Ryskin, Shabelski [96])

A parameterization of the unintegrated gluon density sat-
isfying the BFKL equation but including also the non-
singular parts of the gluon splitting function as given by
DGLAP is presented in [96]. The integrated gluon density
xg(x, µ2) is defined by:

xg(x, µ2) =
1

4
√
2π3

∫ µ2

0
φ(x, k2

⊥)dk
2
⊥ . (48)

The function φ(x, k2
⊥) is obtained by a solution of the evo-

lution equation (including LO BFKL and the remaining
part of the DGLAP splitting function, but without apply-
ing the kinematic constraint) in the perturbative region
k2

⊥ > Q2
0. The non-perturbative part of the gluon density

is identified as the collinear gluon density xg(x,Q2
0) at a

small scale Q2
0 ∼ 4 GeV2:

F(x, k2
⊥) =




xg(x,Q2
0)

Q2
0

if k2
⊥ < Q2

0
φ(x,k2

⊥)
4
√

2π3 if k2
⊥ ≥ Q2

0

. (49)

An explicit form of the parameterization of the function
φ together with the fitted parameters are given in [96].

KMS (Kwiecinski, Martin, Stasto [97])

In the approach of KMS [97] three modifications to the
BFKL equation are introduced in order to extend its va-
lidity to cover the full range in x. Firstly, a term describing
the leading order DGLAP evolution is added. The inclu-
sion of this term has the effect of softening the small x
rise and to change the overall normalization. Secondly, the
kinematic constraint (65) is applied, which has its origin in
the requirement that the virtuality of the exchanged gluon
is dominated by its transverse momentum. Thirdly, the
BFKL equation is solved only in the region of k⊥ > k⊥0,
whereas the non-perturbative region is provided by the
collinear gluon density xg(x, k2

⊥0) at the scale k⊥0. The
border between the perturbative and non-perturbative re-
gions has been taken to be k⊥0 = 1 GeV2.

Also a term which allows the quarks to contribute to
the evolution of the gluon has been introduced. The sin-
gle quark contribution is controlled through the g → qq̄
splitting. The input gluon and quark distributions to this
unified DGLAP-BFKL evolution equation are determined
by a fit to HERA F2 data. The unintegrated gluon density

F(x, k2
⊥) is still only a function of x and k2

⊥, which strictly
satisfies:

xg(x,Q2) =
∫ Q2

dk2
⊥

k2
⊥

f(x, k2
⊥)

=
∫ Q2

dk2
⊥F(x, k2

⊥). (50)

JB (J. Blümlein [98])

In the approach of JB [98] the general k⊥-factorization
formula:

σ(x, µ2) =
∫

dk2
⊥σ̂(x, k

2
⊥, µ

2) ⊗ A(x, k2
⊥, µ

2)

is rewritten in the form [36]:

σ(x, µ2) = σ0(x, µ2) ⊗ g(x, µ2) (51)

+
∫ ∞

0
dk2

⊥
(
σ̂
(
x, k2

⊥, µ
2)− σ0 (x, µ2))⊗ A (x, k2

⊥, µ
2) ,

which gives the relation:

g(x, µ2) =
∫ ∞

0
dk2

⊥A(x, k2
⊥, µ

2).

In the case of (51) the k⊥ dependent gluon distribution
satisfying the BFKL equation can be represented as the
convolution of the integrated gluon density xg(x, µ2) (for
example GRV [99]) and a universal function B(x, k2

⊥, µ
2):

A(x, k2
⊥, µ

2) =
∫ 1

x

B(z, k2
⊥, µ

2)
x

z
g(
x

z
, µ2) dz . (52)

The universal function B(x, k2
⊥, µ

2) can be represented as
a series (see [98]):

N=∞∑
i=1

diĨi−1(...),

where Ĩi = Ii if k2
⊥ > µ2 and Ĩi = Ji if k2

⊥ < µ2, re-
spectively and Ji and Ii are Bessel functions for real and
imaginary arguments. The series comes from the expan-
sion of the BFKL anomalous dimension with respect to αs.
The first term of the above expansion explicitely describe
BFKL dynamics in the double-logarithmic approximation:

B(z, k2
⊥, µ

2) =
ᾱS

z k2
⊥
J0

(
2
√
ᾱS log(1/z) log(µ2/k2

⊥)
)
,

k2
⊥ < µ2, (53)

B(z, k2
⊥, µ

2) =
ᾱS

z k2
⊥
I0

(
2
√
ᾱS log(1/z) log(k2

⊥/µ2)
)
,

k2
⊥ > µ2, (54)

where J0 and I0 are the standard Bessel functions (for real
and imaginary arguments, respectively) and ᾱS = 3αs/π
is connected to the pomeron intercept ∆ of the BFKL
equation in LO ωLL = ᾱS4 log 2. An expression for ωNLL
in NLO is given in [39, 40]: ωNLL = ᾱS4 log 2−Nᾱ2

S. Since
the equations behave infrared finite no singularities will
appear in the collinear approximation for small k⊥.
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KMR (Kimber, Martin, Ryskin [100])

In KMR [100] the dependence of the unintegrated gluon
distribution on the two scales k⊥ and µ was investigated:
the scale µ plays a dual role, it acts as the factorization
scale and also controls the angular ordering of the partons
emitted in the evolution. Already in the case of DGLAP
evolution, unintegrated parton distributions as a function
of the two scales were obtained by investigating separately
the real and virtual contributions to the evolution. In
DGLAP the unintegrated gluon density A(x, k2

⊥, µ
2) can

be written as:

xA(x, k2
⊥, µ

2) = T (k2
⊥, µ

2)
1
k2

⊥

αs(k⊥)
2π

×
∫ (1−δ)

x

P (z)x′g(x′, k⊥)dz (55)

= T (k2
⊥, µ

2)
dxg(x, µ2)

dµ2

∣∣∣∣
µ2=k2

⊥

where T (k2
⊥, µ

2) is the Sudakov form factor, resumming
the virtual corrections:

T (k2
⊥, µ

2) = exp

(
−
∫ µ2

k2
⊥

αs(k⊥)
2π

dk
′2
⊥

dk
′2
⊥

∫ (1−δ)

0
P (z′)dz′

)
.

The structure of (55) is similar to the differential form
of the CCFM equation in (24), but with essential differ-
ences in the Sudakov form factor as well as in the scale
argument in (55). The splitting function P (z) in (55) is
now taken from the single scale evolution of the unified
DGLAP-BFKL expression discussed before in KMS [97].
As in KMS the unintegrated gluon density f(x, k2

⊥, µ
2)

starts only for k2
⊥ > k2

⊥0 = 1 GeV2. An extrapolation
to cover the whole range in k2

⊥ has been performed [101]
such, that:

xA(x, k2
⊥, µ

2) =




xg(x,k2
⊥0)

k2
⊥0

if k⊥ < k⊥0

f(x,k2
⊥,µ

2)
k2

⊥
if k⊥ ≥ k⊥0

(56)

with xg(x, k2
⊥0) being the integrated MRST [102] gluon

density function. The unintegrated gluon density xA(x,
k2

⊥, µ
2) therefore is normalized to the MRST function

when integrated up to k2
⊥0.

JS (Jung, Salam [14, 54])

The CCFM evolution equations have been solved numer-
ically [14, 54] using a Monte Carlo method. The complete
partonic evolution was generated according to (19–28)
folded with the off-shell matrix elements for boson gluon
fusion. According to the CCFM evolution equation, the
emission of partons during the initial cascade is only al-
lowed in an angular-ordered region of phase space. The
maximum allowed angle Ξ for any gluon emission sets the
scale q̄ for the evolution and is defined by the hard scat-
tering quark box, which connects the exchanged gluon to
the virtual photon (see Sect. 4.2).

The free parameters of the starting gluon distribu-
tion were fitted to the structure function F2(x,Q2) in the
range x < 10−2 and Q2 > 5 GeV2 as described in [14],
resulting in the CCFM unintegrated gluon distribution
xA(x, k2

⊥, q̄
2).

In the following we show comparisons between the dif-
ferent unintegrated gluon distributions. The JS uninte-
grated gluon density serves as our benchmark, because
calculations based on this have shown good agreement
with experimental measurements, both a HERA and at
the TEVATRON. In Fig. 7 we show the gluon distribu-
tions at µ = q̄ = 10 GeV obtained from the different
BFKL sets (KMR, JB) as a function of x for different val-
ues of k2

⊥ and as a function of k2
⊥ for different values of

x together with the JS unintegrated gluon density. It is
interesting to note, that the JS gluon is less steep at small
x compared to the others. However, after convolution of
the JS gluon with the off-shell matrix element, the scaling
violations of F2(x,Q2) and the rise of F2 towards small
x is reproduced, as shown in [14, Fig. 4 therein]. In the
lower part of Fig. 7, the effect of the evolution scale on the
distribution in k2

⊥ is shown: The JS and KMR sets both
consider angular ordering for the evolution, whereas in JB
the evolution in k⊥ is decoupled from the evolution in µ,
resulting in a larger k⊥ tail. JS also includes exact energy-
momentum conservation in each splitting which further
suppresses the high-k⊥ tail. Figure 7 also shows, that the
small k2

⊥ region, which essentially drives the total cross
sections, is very different in different parameterizations.

In Fig. 8 we show a comparison of the gluon density
distribution obtained from the derivative method (using
GRV98 LO) and KMS and compare it to the JS gluon at
q̄ = 10 GeV. The KMS and “derivative of GRV” give very
similar unintegrated gluon distributions, which is a result
of the strict relation between the collinear (integrated) and
unintegrated gluon distributions, that was used in KMS.
One also has to note, that KMS and GRV98 use very simi-
lar data sets from HERA for their fits. In Fig. 9 we show a
comparison of the unintegrated gluon density parameteri-
zations from GBW and RS and compare it to the JS gluon
at q̄ = 10 GeV. The RS set is shown only for historical rea-
sons, since it was one of the first unintegrated gluon distri-
butions available. The GBW unintegrated gluon density,
although successful in describing inclusive and diffractive
total cross sections at HERA, is suppressed for large k⊥
values (see Fig. 9), which is understandable, since large k⊥
values can only originate from parton evolution, but were
not treated in GBW. However, it is interesting to compare
it also to more exclusive measurements. One can also see,
that the GBW gluon decreases for k⊥ → 0.

In Table 3 we present cross sections calculated with
four of the different unintegrated gluon distributions dis-
cussed above for heavy flavor production and inclusive
deep inelastic scattering at HERA energies (

√
s = 300

GeV) as well as the total bottom cross section at the
TEVATRON. The benchmark is again the JS parameter-
ization, which is able to describe the corresponding mea-
surements at HERA and at the TEVATRON reasonably
well. Large variations in the predicted cross sections are
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Fig. 7. The unintegrated, two scale
dependent gluon distributions at
q̄ = µ = 10 GeV as a function of
x for different values of k2

⊥ (upper)
and as a function of k2

⊥ for different
values of x (lower): JS [14, 54] (solid
line), KMR [100] (dashed line) and
JB [98] (dotted line)

Table 3. Cross sections for different processes at HERA and
TEVATRON using different parameterizations of the uninte-
grated gluon distributions. The cross sections are calculated
with the Cascade [55] Monte Carlo generator. In all cases
the one-loop αs(µ2) is used with µ2 = p2

⊥ +m2
q, where p⊥ is

the transverse momentum of one of the quarks in the partonic
center-of-mass frame and mq = 0.140, 1.5, 4.75 GeV is mass of
the light, charm and bottom quarks

σ[nb]
JS KMR JB GBW

ep → e′cc̄X (Q2 < 1 GeV2) 696.8 412.8 741.3 735.3
ep → e′cc̄X (Q2 > 1 GeV2) 80.2 47.4 87.7 82.0
ep → e′bb̄X (Q2 < 1 GeV2) 5.36 2.78 4.38 5.64
ep → e′X (Q2 > 1 GeV2) 838.7 610.0 6550.0 4134.0
ep → e′X (Q2 > 5 GeV2) 212.8 127.2 585.1 564.0
pp̄ → bb̄X (

√
s = 1800 GeV) 88100. 27489. 78934. 65990.

observed. It is clear that the parameterizations of the un-
integrated gluon distributions are very poorly constrained,
both theoretically and experimentally. The differences in
definition makes it difficult to go beyond a purely qualita-
tive comparison between the different parameterizations.
Also, since even the integrated gluon density is only in-

directly constrained by a fit to F2(x,Q2), it may be nec-
essary to look at less inclusive quantities to get a good
handle on the unintegrated gluon.

4.6 Beyond leading logarithms

In this section the attempts to go beyond leading order
are described and summarized. First, general aspects of
next-to-leading effects are discussed and then the CCFM
approach is critically considered,

We write the momenta of the t-channel gluons (in Su-
dakov representation) as ki = x+

i P1 + x−
i P2 + k⊥i and

the emitted gluons as pi = vi(P1 + ξiP2) + p⊥i (20). The
discussion in this section will be based on the strong order-
ing limit, that is x+, angles and x− are strongly ordered,
which means that factors of (1 − z) can be safely ignored
since they are of O(1) for z → 0. In the high energy limit
with strong ordering, one can talk of x+ ordering of ex-
changed gluons or of angular ordering of the emitted glu-
ons. The variable ξ (related to the angle of the emitted
gluons) can be written (in this approximation) as:

√
ξi =

p⊥i
x+
i−1

√
s
=

√
x+
i−1

x−
i−1

, (57)
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Fig. 8. The unintegrated, one scale
gluon distributions as a function of
x for different values of k2

⊥ (upper)
and as a function of k2

⊥ for differ-
ent values of x (lower): KMS [97]
(dashed line) and derivative GRV
LO (dotted line) here compared to
the two scale gluon distribution of
JS [14, 54] (solid line) at q̄ = µ =
10 GeV (same as in Fig. 7)

with vi ∼ x+
i−1 for z → 0 (20). The last expression in the

above equation is obtained from:

x−
i−1 ∼ viξi ∼ x+

i−1

(
p⊥i

x+
i−1

√
s

)2

. (58)

4.6.1 General next-to-leading order investigations

It is known from many contexts of QCD that for rea-
sonably accurate predictions it is necessary (at the very
least) to go to next-to-leading order. In what follows, one
has to remember that the role of next-to-leading correc-
tions in the k⊥-factorization approach is very different to
the ones in the collinear approach, since part of the stan-
dard NL corrections are already included at LO level in
k⊥-factorization, as was discussed in chapter 3.

For a next-to-leading logarithmic (NLL) calculation of
a cross section at high energies, there are two main ingre-
dients. One is the NLL corrections to the ‘kernel’ of the
BFKL equation, generating terms αs(αs log 1/x)n. This
part should be independent of the process under consid-
eration. The second part is the correction to the impact
factors (off-shell matrix elements) at either end, and is the
source of the process dependence in the NLL corrections.
Processes of interest include γ∗γ∗ scattering in electron

positron annihilation, forward jets at HERA and Mueller-
Navelet jets at hadron-hadron colliders. In order to de-
scribe these processes at NLO level of accuracy, one needs
the photon impact factor and the jet vertex. For both el-
ements NLO calculations are on the way: for the photon
impact factor the main are the off-shell matrix elements
described in Sect. 3.2 [68–70], and the quark induced jet
vertex has recently been computed in [103].

One of the major developments in past years has been
the completion of the calculation of the NLL corrections to
the BFKL kernel. This was a significant enterprise, lasting
almost a decade [39, 40]. Once the various contributions
have been assembled, the final result can be given in a
fairly compact form [39, 40]. It can be summarized through
the following relation between the next-to-leading BFKL
power, ωNLL, and the leading power ωLL = ᾱS4 log 2:

ωNLL = ᾱS4 log 2 − Nᾱ2
S � ωLL(1 − 6.2αs) . (59)

Substituting a typical value for αs, say 0.2, one finds a neg-
ative power — so rather than improving the accuracy of
the predictions, the NLL corrections seem to lead to non-
sensical answers. A more detailed analysis suggests that
for problems involving two substantially different trans-
verse scales, the inclusion of the NLL corrections leads
to an even worse problem, namely negative cross sections
[104]. So at first sight it seems that the perturbation series
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Fig. 9. The unintegrated, one scale
gluon distributions as a function of
x for different values of k2

⊥ (upper)
and as a function of k2

⊥ for differ-
ent values of x (lower): GBW [94]
(dashed line) and RS [96] (dotted
line) here compared to the two
scale gluon distribution of JS [14,
54] (solid line) at q̄ = µ = 10 GeV
(same as in Fig. 7)

for BFKL physics is simply too poorly convergent for it
to be of any practical use.

Despite this, there are indications that ways exist of
using the NLL corrections for phenomenological purposes
(γ∗γ∗, forward jets or TEVATRON jets with large rapidity
separation might be examples for this). This is because it
is possible to identify a well-defined physical origin for
large parts of the NLL terms. These parts can then be
calculated at all orders, and the remaining pieces are then
a much smaller NLL correction.

A clue as to the origin of the large corrections can
be obtained by examining their structure in the collinear
limit (where one transverse scale is much larger than the
other). From DGLAP we think we understand the origin
of all terms involving (αs logQ2)n – they are associated
with strong orderings in k⊥. So e.g. in the BFKL NLO
corrections (terms ∝ α2

s) we have a piece with (α2
s log

2 Q2)
which is something we already know about from DGLAP.
Terms with this “collinear” enhancement (a number of
powers of log Q) turn out to be responsible for over 90%
of the NLO corrections to BFKL, and so are the reason for
the large size of these corrections. But since their origin
is just DGLAP physics, which we know well, we can also
predict the terms that arise at NNLO (α3

s log
3 Q2) etc.

and resum them.
Suppose one wishes to calculate the high-energy be-

havior of a Green’s function with a squared center of mass

energy s and transverse scales Q,Q0 at the two ends of the
chain. It is convenient to examine this in Mellin transform
space, with ω conjugate to s/(QQ0) and γ conjugate to
the squared transverse momentum ratio Q2/Q2

0. One can
then write the BFKL kernel as

ω = ᾱS (χ0 + ᾱSχ1 + · · ·) , ᾱS =
αsNC

π
. (60)

For small γ (corresponding to a large ratio of transverse
momenta) the leading part of the BFKL kernel goes as

χ0 � 1
γ
+ O(γ2) . (61)

In the same region the NLL corrections behave as

χ1 � − 1
2γ3 − 11

12γ2 + O(1) . (62)

The extra divergences at small γ can be quite easily un-
derstood because each power of 1/γ (after inverse Mellin
transform) corresponds to a logarithm of transverse mo-
mentum (logQ). So for example the term with 1/γ2, given
that it multiplies α2

s, corresponds to a contribution (αs log
Q2/Q2

0)
2, and so looks like a standard term from DGLAP

evolution. One can verify the coefficient that would be ex-
pected from leading-log DGLAP evolution and it comes
out as exactly −11/12.
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The term proportional to 1/γ3 is slightly more sub-
tle because it looks super-leading compared to DGLAP.
Recalling that it is multiplied by ᾱ2

S, we can see that
it is related (after a Mellin transform) to a term which
we can write as (αs logQ2/Q2

0) × (αs log2 Q2/Q2
0), i.e. a

normal DGLAP term, multiplied by a double log of Q2.
Such double logs of Q2 will be discussed in more de-
tail in the next subsection. Essentially, their presence or
absence depends on whether we resum high energy logs
of x+, x− or

√
x+/x− (or equivalently Q2/s, Q2

0/s or
QQ0/s). The small-γ part of the NLO BFKL kernel has
been shown above with the high-energy logs defined in
terms of

√
x+/x− — converting to the natural evolu-

tion variable for DGLAP evolution, x+, the 1/γ3 pole
disappears, and one is left with just the 1/γ2 term. In
other words the small-γ behavior is entirely constrained
by known results from DGLAP.

It is important to note though that the 1/γ3 term is
not purely an artefact in that there is an analogous triple
pole around γ = 1, associated with transverse logarithms
for Q0  Q, and there is no convention for the definition
of the high-energy logs which allows one to get rid of the
triple poles simultaneously at γ = 0 and γ = 1.

Given that these collinearly enhanced contributions
have a simple physical origin, namely the strong order-
ing in transverse momenta, they can be quite straight-
forwardly calculated not just to NLL, but to all orders.
For example the generalization of the 1/γ3 and 1/(1−γ)3
terms can be obtained by implementing the kinematic con-
straint discussed below. The generalization of the 1/γ2

and 1/(1− γ)2 terms comes from the leading-log DGLAP
kernel and from the running of the coupling.

Of course an understanding of the structure of the ker-
nel around γ = 0 does not formally tell us anything about
γ = 1/2, which is the region of interest for small-x pre-
dictions. What is remarkable though is that a collinear
approximation, i.e. taking just the known poles at γ = 0
and γ = 1,

χcoll
1 = − 1

2γ3 − 1
2(1 − γ)3

− 11
12γ2 − 11

6(1 − γ)2
, (63)

approximates the full next-to-leading corrections to better
than 93% over the whole range 0 < γ < 1. The above equa-
tion is just the expression in ‘γ’-space (the Mellin trans-
form of Q space) of terms that we know from DGLAP.

This suggests that a practical approach to ‘improv-
ing’ NLL BFKL might just be to include the higher-order
collinear terms at all orders. This has been done in [105–
107], and is found to considerably improve the stability of
the predictions for ω, giving a phenomenologically sensible
value of ω in the range 0.25 to 0.3 for αs � 0.2. These kinds
of improvements are necessary whenever exact NLO cor-
rections are used, because without them the result is very
unstable (large renormalization scale uncertainty, nega-
tive power ω for αs > 0.15). The same approach can be
extended to the calculation of Green’s functions and phys-
ical cross sections, and work in this direction is currently
in progress [108].

There have been other approaches to supplementing
the NLL corrections with higher-order contributions, no-

tably performing a BLM (Brodsky Lepage Mackenzie)
change of the scale for αs [109] and enforcing rapidity
separations between emissions [110]. The basic idea be-
hind the BLM scale choice is that a large part of the NLO
corrections come about because in the LO calculation the
scale choice for αs was unreasonable. This is reflected in
the NLO corrections by a large piece proportional to β0,
which is one of the parameters of the β function control-
ling the renormalization scale dependence of αs. However,
in a NLO calculation one obtains coefficients of nf , and of
CA, but not of β0 as such, so one can’t identify what the
actual coefficient of β0 is. BLM identifies the “amount” of
β0 with the entire nf part, effectively guessing from the
coefficient of nf the coefficient of β0, and then saying that
it should all be re-absorbed into a different choice of scale
for αs in the LO piece. When the authors of [109] tried
this for NLO BFKL they found that it made the calcula-
tions marginally worse (even more unstable), unless they
chose a very specific renormalization scheme. They argue
that this scheme, which appears in certain other contexts
involving three-gluon couplings (though not particularly
in a small-x limit) might be a more natural choice when
applying the BLM procedure, and find a value for ω of
around 0.15.

The approach which enforces rapidity separations is
motivated by the observation that the approximations in
the LL calculation for BFKL are satisfied only when there
is a large gap in rapidity between successive emissions,
but that one nevertheless integrates over all possible sep-
arations between emissions (up to the limit where emis-
sions have the same rapidity), which is plainly in viola-
tion of the initial approximations. One can choose instead
to integrate up to some (a priori arbitrary) minimum ra-
pidity separation, ∆η. This modifies one’s prediction at
higher orders, and in particular can partially mimic the
NLL corrections. However its explicit merging with the
NLL corrections by Schmidt [110] revealed a significant
remaining instability with respect to variations of ∆η.
There is evidence though that when combined with the
collinear resummation described above, much of the in-
stability with respect to the variation of ∆η disappears
[111]. Essentially both methods (collinear enhancement,
rapidity separation) cut out certain regions of phase space.
With the “collinear” approach the piece cut out is well de-
fined, whereas with the rapidity cut, the amount cut out
depends on ∆η. But when the two methods are put to-
gether, a large fraction of the phase space that would be
removed by a rapidity cut has already been removed by
the collinearly enhanced terms, so the effect of rapidity
cut is much reduced.

4.6.2 Anomalous dimensions

So far the discussion has been most relevant to processes
with two similar hard scales. In the case of re-summed
small-x splitting functions (anomalous dimensions) in ad-
dition to the issues discussed above, there is a further sub-
tlety related to iteration of the running of the coupling. It
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has been discussed with complementary methods but sim-
ilar conclusions in [107, 110, 112], [113–115] and [116]. Es-
sentially the result is that for a small-z splitting function
at scale Q2, the typical scale in the evolution is consid-
erably higher than Q2 4. Similar results have been found
before also in [120–123] in the framework of DGLAP, and
in [109] in the framework of BFKL. The splitting function
is only independent of Q2 at leading order. At NLO it is
no longer scale invariant because the NLO piece comes in
with a different relative weight according to αs(Q2), as do
NNLO etc. When deducing the small-x enhanced part of
the splitting function then the NLO, NNLO, NNNLO (in
the DGLAP hierarchy, αn+m

s lognQ2 ⇒ NmLO) pieces
which are small-x enhanced need to be determined at all
orders. And the final ‘splitting function’ then depends on
Q2 because the relative weights of all these pieces is differ-
ent according to the Q2 value. The inclusion of all these
terms causes the Pgg(z) splitting function to grow as a
power 1/z1+ωc at small z. Initial calculations of this de-
pendence led to a large value for ωc and consequent in-
compatibility with the data (see e.g. [124]). However these
predictions are modified by two classes of large effects:
NLL contributions, similar to those discussed above, and
also corrections associated with the fact that the effective
scale of αs relevant to small-z splitting functions is sub-
stantially larger than Q2. After an involved calculation
one finds that, parametrically, this implies corrections to
ωc of order α

5/3
s , α

7/3
s , . . . (which need to be resummed)

and leads to a significant reduction in the small-x power
of the splitting function compared to the fixed-coupling
case, as well as increased stability with respect to the NLL
corrections. This means that the power ωc for the small-z
dependence of the splitting function, 1/z1+ωc , is smaller
than one would expect (i.e. it’s not the same ω(αs(Q2))
that is calculated for a process such as γ∗(Q)γ∗(Q)) and
furthermore it sets in only at very small z (below 10−5).

An approach which also involves some of the elements
discussed above has been proposed and used in [125, 126]
to study scaling violations in the HERA F2 data [127].
In their approach the authors make use of a collinear re-
summation around γ = 0, however argue that this cannot
also be applied to γ = 1, which implies that it is not
possible to predict the height of the minimum of the char-
acteristic function. Accordingly the asymptotic power λ
of the small-x splitting function ∼ x−λ must be fitted to
the data. Within this approach the authors find an im-
proved agreement with the F2 data compared to a pure
NLO DGLAP fit. The optimal value for λ depends on the
details of how the resummation is implemented, in one
case being negative (λ � −0.25), while in the other it is of
the order of λ � 0.2 which would also be consistent with
other resummation approaches.

4 The effective high scale could be responsible (see discus-
sions in [117–119]) for the good agreement between the experi-
mental data for the F2 structure function and the perturbative
estimations in the small x range

4.6.3 CCFM and problems beyond leading logs

The CCFM evolution involves three partonic variables,
the light-cone momentum fraction, the emission angle and
the transverse momentum. Looking at the case where a
forward jet in DIS has a p2

⊥ much smaller than Q2, the
natural variable when going up in scale from the proton
towards the virtual photon is the positive light-cone mo-
mentum fraction, x+ = Q2/(sy) ∼ xbj , giving rise to the

standard double-logs,
(
ᾱS log Q2

p2⊥
log 1

x+

)n
, coming from

integrals of the form
∫ Q2

p2⊥
dq2/q2

∫ 1
x
dz/z. Naively going

from the photon side with the negative light-cone momen-
tum fraction (compare (58)) x− = p2

⊥/(sy) = x+p2
⊥/Q

2

will give us so-called illegal double-logs of Q2/p2
⊥(

ᾱS log
Q2

p2
⊥
log

1
x−

)n

=
(
ᾱS log

Q2

p2
⊥
log

1
x+ + ᾱS log2 Q2

p2
⊥

)n
. (64)

The wording illegal comes from the observation, that the
renormalization group equations (DGLAP) tell us what
classes of logs we can expect (they are first order differen-
tial equations so we expect only single logs of Q2). When
we get a double log of Q2 then this is illegal because it can-
not be compatible with the renormalization group. Sub-
tleties, of course, arise because different ways of writing
the same expression can lead to the double log being visi-
ble or not, and that is what the above Eq. (64) describes.
CCFM uses the angle (or more specifically ξ) as evolution
variable. Using

√
ξ = p⊥

x+
√
s
, then the ordinary collinear

evolution with increasing p⊥ and automatically decreas-
ing x+ results in angular ordering or ordering in

√
ξ. If

on the other hand the p⊥’s decrease then a decrease in
x+ does not automatically imply an increase in angle – so
angular ordering becomes a stronger condition. It is the
angular ordering

√
ξ ∼ √

x+/x− which is responsible for
the illegal double logs.

In the original formulation of CCFM a kinematic con-
straint was noted:

k2
i > z+ik

2
i−1,

which was derived already in [128, (2.11)] and in [129] in
a frame where parton i is along the z axis. If the trans-
verse momenta k⊥i are to be the dominant contributions
to the virtualities k2

i (as assumed in the derivation of the
CCFM equation) then the so-called kinematical or consis-
tency constraint is obtained:

k2
⊥i > z+ik

2
⊥i−1. (65)

To merely have a self-consistent evolution equation (no in-
frared unsafety, proper real-virtual cancellations), which
gives correct cross sections and final-state distributions at
leading logarithmic accuracy, the consistency constraint
is not needed in the CCFM equation. The way the con-
sistency constraint was originally written into the CCFM
equation should not be used because it messes up real-
virtual cancellations as discussed below in Sect. 4.6.4.
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4.6.4 NLL corrections and event generators

There are also aspects in which the NLL corrections may
be able to help guide the construction of event generators.
They give a hint about the kind of physical effects which
are likely to be important (splitting functions, kinematic
constraint). There are also situations when building an
event generator in which one is faced with two possible
strategies, and sometimes the NLL corrections give clues
as to the direction to be followed.

One example relates to the running of the coupling.
A priori it is not necessarily clear what scale to use and
for simplicity, in various phenomenological contexts, the
scale has often been chosen to be k2

⊥i (as related to the
branching (i− 1) → i in Fig. 2). However, in the full NLO
calculation for BFKL a term appears

−ᾱ2
Sβ0 ln

p2
⊥i
µ2 . (66)

The interpretation is very simple: the right scale in the
LO kernel is simply the emitted p⊥ (because if included
in the LO kernel and then expanded in powers of αs, one
obtains precisely such a term at NLO).

But knowledge of the ‘ingredients’ needed for an event
generator is not always sufficient. One generally has a ba-
sic equation for the branching, such as the CCFM equa-
tion, but inserting the relevant corrections such as to ob-
tain the correct structure of logs at the end is often not
trivial, because the full set of logs comes out of the it-
eration of the branching. Furthermore some care is often
needed to maintain proper cancellation of real and virtual
corrections.

For example in normal BFKL the correct cubic poles
around γ = 1 can be obtained by inserting the require-
ment k2

i > zik
2
i−1 for each branching. This corresponds to

symmetrizing evolution up in transverse scale (with x+ as
the evolution variable) and evolution down in transverse
scale (with x−).

However implementing this constraint directly into
CCFM leads to the wrong coefficient for the 1/(1 − γ)3
term — in other words the symmetrization is not prop-
erly accomplished. One can partially solve the problem
by modifying the virtual corrections (non-Sudakov) form
factor

ln∆ns(z, q2, k2
⊥)=−

∫
dq′2

q′2

∫ 1

z

dz′

z′ ᾱS(q′2)Θ(q′2 − z′2q2)

×Θ(k2
⊥ − q′2)Θ

(
k2

⊥
q2 − z′

)
, (67)

where the last Θ function accounts for the kinematic con-
straint in the virtual corrections. This will not make the
cross section exactly symmetric, but it will ensure that for
evolution downwards in scale the evolution variable does
at least correspond roughly to x−. On the other hand as
far the final state structure is concerned, this ‘hack’ [130]
cuts out certain regions of phase space that should be left
in. An a priori way of determining whether the ‘hacks’ are
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Fig. 10. The values of the splitting variable z for events sat-
isfying the shown forward jet criteria, with θ = 7o at HERA
energies

any good should be to examine how they compare to ex-
act NLO calculations (but that means determining their
expansion to O(α2

s), which isn’t necessarily an easy task).
Another source of next-to-leading-log corrections is the

gluon splitting function. At very large energies, the 1/z
term in Pgg, included in BFKL and CCFM, will certainly
be dominant. However, the question is whether the treat-
ment of just this term is sufficient at energies available at
present colliders.

The effect of small x parton dynamics is best seen in
forward jet production in deep inelastic scattering, where
the contribution from typical DGLAP dynamics is sup-
pressed. In such a process, using a Monte Carlo simula-
tion, the distribution of z-values can be studied, and the
validity of the small x approximation can be checked.

The basic event selection criteria for forward jet pro-
duction at HERA are given in Fig. 10. The criterionE2

T /Q
2

is essential to suppress the DGLAP contribution within a
typical range in x of 10−3 < x < 10−2. The evolution
takes place from the large xjet down to the small x with
a typical range at HERA energies of ∆x = x/xjet > 0.01.
In order to justify the use of an evolution equation (in-
stead of a fixed order calculation) one would require at
least 2 or more gluon emissions during the evolution. To
roughly estimate the energy fractions zi of 3 gluon emis-
sions between 10−3 < x < 10−1, one can assume that all
gluons carry equal energies. Then the range of ∆x ∼ 0.01
results in z ∼ 0.2, which is far from being in the very
small z region, where the BFKL or CCFM approxima-
tions (treating only the 1/z terms in the gluon splitting
function) are expected to be appropriate. In Fig. 10 we
show the values of the splitting variable z in events satis-
fying the forward jet criteria at HERA energies obtained
from the Monte Carlo generator Cascade[14]. Since the
values of the splitting variable z are indeed extending into
the medium and large z region (the majority has z > 0.1),
it is questionable, whether the BFKL evolution equations,
including only the 1/z part of the gluon splitting function,
are applicable. CCFM also has a 1/(1 − z) term, which
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means that in any case one expects quite a few emissions
for z → 1, but still, the medium z range is questionable.

The implementation of the full DGLAP splitting func-
tion into CCFM is problematic. Naively one would simply
replace

1
1 − z

→ 1
1 − z

− 2 + z(1 − z) , (68)

in the CCFM splitting function. However doing this leads
to negative branching probabilities, so one needs to be a
little more ‘subtle’.

For example a positive definite branching probability
can be obtained by making the following replacements

1
z

→ 1 − z

z
+Bz(1 − z) ,

1
1 − z

→ z

1 − z
+ (1 − B)z(1 − z) , (69)

resulting in:

P (z, q, k) = ᾱS
(
k2

⊥
)( (1 − z)

z
+ (1 − B)z(1 − z)

)
×∆ns(z, q, k) + ᾱS

(
(1 − z)2q2)

×
(

z

1 − z
+Bz(1 − z)

)
(70)

where B is a parameter to be chosen arbitrarily between 0
and 1. As a consequence of the replacement, the Sudakov
form factor will change to:

log∆s(q̄2, Q2
0) = −

∫ q̄2

Q2
0

dq2

q2

∫ 1−Q0/q

0
dzᾱS

(
q2(1 − z)2

)

×
(
1 − z

z′ + (1 − B)z(1 − z)
)

(71)

and also the non-Sudakov form factor needs to be replaced
by:

log∆ns = −ᾱs
(
k2

⊥
) ∫ 1

0
dz′
(
1 − z

z′ + (1 − B)z(1 − z)
)

×
∫

dq′2

q′2 Θ(k − q′)Θ(q′ − z′q) (72)

which can be rewritten

log∆ns = −ᾱs
(
k2

⊥
) ∫ 1

0
dz′
(
1 − z

z′ + (1 − B)z(1 − z)
)

×2 ln
k

z′q
Θ(k − z′q) . (73)

The proposed changes to the original CCFM splitting
function are ‘hacks’. There are reasonable arguments, to
change the scale in αs to q2(1−z)2 everywhere, to include
the full splitting function instead of only the singular parts
and also to impose the kinematic constraint, with its con-
sequences. These ‘hacks’ are of course constrained by the
requirement that the NLL corrections corresponding to
the given branching equation are similar to the true NLL
corrections. However, this will not be the real final solution
and perhaps it is a need for a better starting point, em-
bodying both angular ordering and symmetry right from
the start.

5 Generators for small-x evolution

Three different Monte Carlo event generators are avail-
able, specifically devoted to small x processes (in chrono-
logical order): Smallx [48, 49], LDCMC [50–53] and Cas-
cade [14, 54, 55]

5.1 Smallx

Smallx[48, 49] is a Monte Carlo event program which
generates events on parton level at small x in ep scatter-
ing. It uses the CCFM [41–44] evolution equation for the
initial state cascade convoluted with the k⊥-factorized off-
shell matrix elements of [35] for light and heavy quark pair
production. Modifications of the original Smallx[48, 49]
version concerning the non-Sudakov form factor ∆ns were
necessary to obtain a reasonable description of the struc-
ture function F2(x,Q2) as well as hadronic final states like
the forward jets at HERA [54, 131].

In Smallx the initial state gluon cascade is gener-
ated in a forward evolution approach. The gluon evolu-
tion starts from the proton side with an initial gluon dis-
tribution according to (including a Gaussian intrinsic k⊥
distribution around k0):

x0G0(x0, k
2
⊥0) = N · (1 − x0)4 · exp (−k2

⊥0/k
2
0
)

(74)

with N being a normalization constant. A gluon with mo-
mentum fraction xi and transverse momentum k⊥i is al-
lowed to branch into a virtual (t-channel) gluon with mo-
mentum ki+1 and a final state gluon with momentum pi+1
according to the CCFM splitting function [41–44]. This
procedure is repeated until the next emitted gluon would
violate the angular bound q̄ given by the matrix element.

Smallx generates the full parton level structure, but
due to the complicated structure of the initial state
branchings and the phase space of the matrix element,
a weight is associated with each event. Although Smallx
produces weighted events and therefore is inefficient for
generating specific exclusive signatures, it can be used
for the CCFM evolution and to calculate the inclusive
structure function F2(x,Q2). By performing a fit to mea-
surements of the inclusive structure function F2(x,Q2),
Smallx can be used to determine the unintegrated CCFM
gluon density xA(x, k2

⊥, q̄
2) in a grid in x, k2

⊥ and q̄2 (with
q̄ being the scaled maximum angle allowed for any emis-
sion with q̄2 = x2

n−1Ξs). This numerical representation
can be used for any other calculation. It is advantageous,
that the full parton level is generated during the evolution,
since this information can be used for comparison with
other event generators adopting a more efficient backward
evolution approach [14, 54, 55].

5.2 Cascade

Cascade[14, 54, 55] is a full hadron level event generator
which uses k⊥-factorization of the cross section into an
off-shell matrix element and an unintegrated gluon den-
sity function. The initial state cascade is generated in a
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backward evolution approach, which was necessary for an
efficient event generation. The Lund string fragmentation
package Jetset/Pythia[132] is used for hadronization.
Cascade can be used in ep, γp and also pp̄ processes.

The hard scattering process is calculated using the off-
shell matrix elements given in [35] for light and heavy
quark pair production, or γg → J/ψg [65] convoluted with
the unintegrated gluon density xA(x, k2

⊥, q̄
2). It could be

shown in [14, 54, 55] that a backward evolution approach
[14, 54, 55, 133, 134] is possible for small x processes, which
are not restricted to strong k⊥ ordering in the initial state
cascade. This was the main ingredient for the development
of a time efficient Monte Carlo event generator.

The backward evolution starts from the hard scatter-
ing process and evolves the partons backwards towards the
proton. This approach is much more efficient, compared
to the strategy of Smallxwhich uses a forward evolu-
tion approach. However, it requires the unintegrated gluon
density to be determined beforehand. The CCFM unin-
tegrated gluon distribution has been determined from a
Monte Carlo solution of the CCFM evolution equation
which has been fitted to the measured structure func-
tion F2(x,Q2). It is advantageous to have the uninte-
grated gluon density determined in a Monte Carlo ap-
proach with full control over the partonic state, as avail-
able in Smallx, since this allowed to show [14] that the
backward evolution produces identical results to the for-
ward evolution approach on the parton level. The proof
of equivalence of the forward and backward evolution is a
unique feature of CCFM. For DGLAP this has only been
shown at at an inclusive level, while at the exclusive level,
complications can arise related to differences in the treat-
ment of angular ordering between forward and backward
evolution.
The program code is available from
http://www.quark.lu.se/˜hannes/cascade

5.3 LDCMC

Since the LDC model is inherently forward-backward sym-
metric, it is natural to design a Monte Carlo in the same
way. In the LDCMC program all emissions are generated
in one go from an incoming, non-perturbative gluon with
energy fraction x0, using a generating function

G

(
a = log

Q2x0

k2
⊥0x

, b = log
x0

x

)
(75)

=

√
ᾱSa

b
I1(2ᾱS

√
ab) =

∞∑
n=1

ᾱnSa
nbn−1

n!(n − 1)!

=
∞∑
n=1

∫
ᾱnSΠj

dzj+
zj+

dzj−
zj−

δ


log

x

x0
−
∑
j

log zj+


 .

After this, the azimuthal angles of each emission are se-
lected according to a flat distribution and a number of
correction factors are included to produce a weight for
the generated partonic state. LDCMC can either produce

weighted events or use the weight as a hit-or-miss prob-
ability to produce unweighted events. The weight can in-
clude many things such as:

– The full splitting functions (also for quark propaga-
tors) instead of the simplified dzj+

zj+

dzj−
zj−

. Optionally the
full matrix element for a 2 → 2 sub-collision can be
used. In particular for the quark box closest to the
virtual photon the full off-shell matrix element can be
used.

– The standard Sudakov form factors.
– Emissions not satisfying the LDC constraint in (30)

are given zero weight.
– The running of αs. The scale is taken to be the trans-

verse momentum of the emitted parton which, due to
the LDC constraint, is always close to the highest scale
in the emission.

Averaging over weights for a given x0, x and Q2, it is
then possible to fit the input gluon (and quark) distribu-
tion(s) to describe eg. F2(x,Q2).

Using these input distributions, parton-level events can
be generated. Final-state parton cascades are added using
the colour-dipole cascade implemented in Ariadne for
e+e− annihilation but only allowing emissions which are
below the LDC constraint in (30). Finally, standard Lund
string fragmentation can be added to produce final-state
hadrons.

LDCMC is distributed together with the Ariadne pro-
gram, available from http://www.thep.lu.se/˜leif/
ariadne but in using it, one should keep in mind, that
the reproduction of data on eg. forward jets is very poor.
The problem can be traced to the non-singular parts of the
gluon splitting function. In a newer (not yet released) ver-
sion, it is possible to allow only gluonic chains and only the
singular parts of the gluon splitting function. The results
are then consistent with what is obtained with Smallx
and Cascade.

6 Conclusions

In this summary report we presented the state of the art
of small x physics in the year 2001. Significant progress
has been made in the understanding of the small x evo-
lution equations, CCFM and BFKL. It has been possi-
ble for the first time to describe the structure fucntion
F2(x,Q2) and also hadronic final state measurements, like
forward jet production, with the CCFM evolution equa-
tion implemented into a Monte Carlo program. In more
detailed studies the need for improving the small x split-
ting functions became evident, also from considering next-
to-leading corrections to the BFKL equation. However,
considering these improvements in detail, it became also
clear, that this is not a trival task.

Significant progress has also been made in the under-
standing of k⊥-factorization in general and the calculation
of the off-shell matrix elements. In certain approximations
the off-shell matrix elements are already calculated to or-
der O(α2

s). However, some critical points still need to be



The Small x Collaboration: Small x phenomenology summary and status 99

Table 4. Summary and overview over existing Monte Carlo event generators for small x physics

Name QCD cascade applicable processes event record

Smallx forward evolution ep γ∗g∗ → qq̄ parton level
[48, 49] with CCFM γ∗g∗ → QQ̄ weighted events

Cascade backward evolution ep,γp, pp̄ γ∗g∗ → qq̄ parton level
[14, 54, 55] with CCFM γ∗g∗ → QQ̄ unweighted events

using unintegrated γg∗ → J/ψg hadronization
gluon density g∗g∗ → qq̄ via Jetset/Pythia [132]

g∗g∗ → QQ̄

LDCMC forward–backward ep γ∗g∗ → qq̄ weighted or
[50–53] symmetric LDC γ∗g∗ → QQ̄ unweighted events

evolution final state cascade
hadronization
via Jetset/Pythia [132]

clarified, as the gauge invariance of the k⊥-factorization
approach is not yet clear, if considered beyond leading
order.

For the first time, a comparison of all available para-
merisations of unintegrated gluon distributions was made,
showing significant differences, which indicate, that more
(and more exclusive) measurements need to be used in
constraining the unintegrated gluon distributions further.
For the first time, we are in a position to try to perform a
global fit, similar to those using the collinear approxima-
tion, to determine the unintegrated gluon density.

Our understanding of small-x physics is far from com-
plete. There are a number of theoretical and phenomeno-
logical issues which need to be further settled. In this
overview we have mentioned many such issues. On the
theoretical side, we need to understand the convergence of
the perturbative expansion of the evolution kernel, and we
also need to calculate the impact factors to next-to-leading
order. On the phenomenological side it is important to
understand the importance of non-singular terms in the
gluon splitting function especially when implemented in
event generators. It is also important to understand the
uncertainties involved with fitting unintegrated parton
distributions to data. These parameterizations should
then be compared to a wide variety of data, possibly re-
quiring the calculation of new off-shell matrix elements for
other than the mentioned processes.

Finally, we want to note that not all aspects of small-x
physics have been covered in this paper. Phenomena such
as rapidity gaps, shadowing effects and multiple interac-
tions are also interesting aspects of small-x evolution, and
will be included in forthcoming meetings and publications.

Appendix: The small-x collaboration

Today the work on these issues is spread out on a number
of different small groups around the world. Although some
of these group are already collaborating on an informal
basis, it was agreed in the meeting, that the future work

could be more coordinated. As a consequence of this a
Small-x Collaboration was formed. The idea is to start
small and informal and to set up a web site an a mailing
list, but also to organize small meetings such as the one
held in Lund resulting in this paper.

The web site is located at http://www.thep.lu.se/
Smallx and will among other things contain a compilation
of subroutines implementing parameterizations of uninte-
grated parton distributions and off-shell matrix elements
and compilations of relevant papers, theoretical as well
as phenomenological and experimental. The mailing list
would be used to announce new results, to ask for help
from experts in the field and so on.

The Small-x Collaboration will, of course, be open to
anyone in the field. To join the collaboration one can sim-
ply join the mailing list by sending a mail to smallx-
subscribe@thep.lu.se (more instructions can be found
on the web site).
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